
 
 

Approved for public release; further dissemination unlimited 

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

 

Preprint 
UCRL-JC-153573 

Partial Dynamical 
Symmetry in Nuclear 
Systems 

J. Escher 

This article was submitted to: Computational and Group Theoretical 
Methods in Nuclear Physics, Playa del Carmen, Mexico 
 2/18/2003 – 2/21/2003 

June 2, 2003 
 

 
 

 



 
 

DISCLAIMER 
 
This document was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California.  The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California, and 
shall not be used for advertising or product endorsement purposes. 
 
This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be 
made before publication, this preprint is made available with the understanding that it will not be cited 
or reproduced without the permission of the author. 
 
This work was performed under the auspices of the United States Department of Energy by the 
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 
 
 

This report has been reproduced directly from the best available copy. 
 

Available electronically at http://www.doc.gov/bridge 
 

Available for a processing fee to U.S. Department of Energy 
And its contractors in paper from 

U.S. Department of Energy 
Office of Scientific and Technical Information 

P.O. Box 62 
Oak Ridge, TN 37831-0062 
Telephone:  (865) 576-8401 
Facsimile:  (865) 576-5728 

E-mail: reports@adonis.osti.gov 
 

Available for the sale to the public from 
U.S. Department of Commerce 

National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 

Telephone:  (800) 553-6847 
Facsimile:  (703) 605-6900 

E-mail: orders@ntis.fedworld.gov 
Online ordering: http://www.ntis.gov/ordering.htm 

 
 

OR 
 

Lawrence Livermore National Laboratory 
Technical Information Department’s Digital Library 

http://www.llnl.gov/tid/Library.html

 

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm


June 2, 2003 14:29 WSPC/Trim Size: 9in x 6in for Proceedings PdCEscher

PARTIAL DYNAMICAL SYMMETRY IN NUCLEAR

SYSTEMS
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Nuclear Theory and Modeling Group, N Division

Lawrence Livermore National Laboratory,

P.O. Box 808, L-414, Livermore, CA 94551, USA

E-mail: escher1@llnl.gov

Partial dynamical symmetry (PDS) extends and complements the concepts of ex-
act and dynamical symmetry. It allows one to remove undesired constraints from
an algebraic theory, while preserving some of the useful aspects of a dynamical
symmetry, and to study the effects of symmetry breaking in a controlled manner.
An example of a PDS in an interacting fermion system is presented. The associ-
ated PDS Hamiltonians are closely related with a realistic quadrupole-quadrupole
interaction and provide new insights into this important interaction.

1. Introduction

Algebraic, symmetry-based theories provide an elegant and practical ap-

proach for describing and understanding a variety of physical systems.

These theories offer the greatest simplifications when the interaction under

consideration is symmetry preserving in the selected state labeling scheme,

that is, when the Hamiltonian either commutes with all the generators of

a particular group (‘exact symmetry’) or when it is written in terms of

and commutes with the Casimir operators of a chain of nested groups (‘dy-

namical symmetry’). An exact or dynamical symmetry not only facilitates

the numerical treatment of the Hamiltonian, but also its interpretation and

thus provides considerable insight into the physics of a given system.

Algebraic models can also be of value in situations where it is neces-

sary to introduce symmetry-breaking terms in the Hamiltonian in order to

achieve agreement with experimentally observed features. Pragmatically, it

is often possible to decompose the offending terms into basic parts (“irre-

ducible tensor operators”) which exhibit specific transformation properties.

Provided the appropriate group coupling coefficients and the matrix ele-

ments of some elementary tensor operators are available, matrix elements
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of operators that connect inequivalent irreducible representations can be

determined and the exact eigenvalues and eigenstates can then be obtained

(at least in principle). Furthermore, by studying the effects of symmetry-

breaking terms, one gains new insights into the dynamics of the system, the

relevance and robustness of the symmetries under consideration, and their

limitations. In some cases new symmetries emerge from a broken-symmetry

regime. Their identification and interpretation is often simplified in the

framework of an algebraic model. Examples of such emerging symmetries

include quasi-dynamical symmetry1 and pseudo-spin symmetry2.

One can also consider introducing some intermediate structure that al-

lows for symmetry breaking but retains some aspects of the dynamical

symmetry. Partial dynamical symmetry (PDS) provides such a structure3.

Two types of partial dynamical symmetry have been studied in recent years.

Partial dynamical symmetry of the first kind preserves the advantages of a

dynamical symmetry for a part of the system. It corresponds to a particular

symmetry breaking for which the Hamiltonian is not invariant under the

symmetry group and hence various irreducible representions (irreps) are

mixed in its eigenstates, yet it possesses a subset of ‘special’ solvable states

which respect the symmetry. PDS of the second kind corresponds to a sym-

metry breaking for which all eigenstates of the Hamiltonian preserve part

of the dynamical symmetry4. In this scenario, the dynamical symmetry

associated with an intermediate group G2 in a subchain G1 ⊃ G2 ⊃ G3 is

broken for all states of the system, while the remaining (dynamical) symme-

tries are preserved. The resulting Hamiltonian is in general not analytically

solvable, but its eigenstates can still be (partly) classified by quantum la-

bels associated with the groups G1 and G3. Further generalizations of the

partial symmetry concept have been considered as well5.

This contribution will discuss an example of a partial dynamical symme-

try in an interacting fermion system. More specifically, in the framework of

the symplectic shell model (SSM), there exists a family of PDS Hamiltoni-

ans which are closely related to the nuclear quadrupole-quadrupole interac-

tion. The Hamiltonians and their eigenstates are discussed and applications

to the deformed light nuclei 20Ne and 24Mg are presented.

2. Quadrupole-Quadrupole Interaction in the SSM

The quadrupole-quadrupole interaction is an important ingredient in mod-

els that aim at reproducing quadrupole collective properties of nuclei.

A model which is able to fully accommodate the action of the collec-
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tive quadrupole operator, Q2m =
√

16π
5

∑

s r2
sY2m(r̂s), is the symplec-

tic shell model (SSM), an algebraic scheme which respects the Pauli ex-

clusion principle6. In the SSM, this operator takes the form Q2m =√
3(Ĉ

(11)
2m + Â

(20)
2m + B̂

(02)
2m ), where Â

(20)
lm , B̂

(02)
lm , and Ĉ

(11)
lm are symplectic

generators with good SU(3) [superscript (λ, µ)] and SO(3) [subscript l, m]

tensorial properties. The Â
(20)
lm (B̂

(02)
lm ), l = 0 or 2, create (annihilate) 2~ω

excitations in the system. The Ĉ
(11)
lm , l = 1 or 2, generate a SU(3) sub-

group and act only within one harmonic oscillator (h.o.) shell (
√

3Ĉ
(11)
2m =

QE
2m, the symmetrized quadrupole operator of Elliott, which does not cou-

ple different h.o. shells7, and Ĉ
(11)
1m = L̂m, the orbital angular momentum

operator). A fermion realization of these generators has been given8.

A basis for the symplectic model is generated by applying symmet-

rically coupled products of the 2~ω raising operator Â(20) with itself to

the usual 0~ω many-particle shell-model states. Each 0~ω starting con-

figuration is characterized by the distribution of oscillator quanta into

the three cartesian directions, or, equivalently, by its U(1)×SU(3) quan-

tum numbers Nσ (λσ , µσ). Here (λσ , µσ) are the Elliott SU(3) labels, and

Nσ = σ1 + σ2 + σ3 is related to the eigenvalue of the oscillator number

operator. 20Ne, for instance, has Nσ = 48.5 (after removal of the center-

of-mass contribution) and (λσ , µσ) = (8,0). For 24Mg, one finds Nσ = 62.5

and (λσ , µσ) = (8,4). The product of N/2 raising operators Â(20) gener-

ates N~ω excitations for each starting irrep Nσ (λσ , µσ). Each such product

operator P N(λn,µn), labeled according to its SU(3) content, (λn, µn), is cou-

pled with |Nσ (λσ , µσ)〉 to good SU(3) symmetry ρ(λ, µ), with ρ denoting

the multiplicity of the coupling (λn, µn) ⊗ (λσ , µσ). To complete the basis

state labeling, additional quantum numbers α = κLM are required, where

L denotes the angular momentum with projection M , and κ is a multiplic-

ity index, which enumerates multiple occurrences of a particular L value

in the SU(3) irrep (λ, µ). The group chain corresponding to this labeling

scheme is Sp(6,R) ⊃ SU(3) ⊃ SO(3) which defines a dynamical symmetry

basis.

The quadrupole-quadrupole interaction connects h.o. states differing in

energy by 0~ω, ±2~ω, and ±4~ω, and may be written as

Q2 · Q2 = 9ĈSU3 − 3ĈSp6 + Ĥ2
0 − 2Ĥ0 − 3L̂2 − 6Â0B̂0

+{terms coupling different h.o. shells} , (1)

where ĈSU3 and ĈSp6 are the quadratic Casimir invariants of SU(3) and

Sp(6,R) with eigenvalues 2(λ2+µ2+λµ+3λ+3µ)/3 and 2(λ2
σ +µ2

σ +λσµσ +
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3λσ+3µσ)/3+N2
σ/3−4Nσ, respectively. These operators, as well as the h.o.

Ĥ0 and L̂2 terms, are diagonal in the dynamical symmetry basis. Unlike

the Elliott quadrupole-quadrupole interaction, QE
2 ·QE

2 = 6ĈSU3−3L̂2, the

Q2 ·Q2 interaction of Eq. (1) breaks SU(3) symmetry within each h.o. shell

since the term Â0B̂0 ≡ Â
(20)
0 B̂

(02)
0 = ({Â × B̂}(00)

0 −
√

5{Â × B̂}(22)
0 )/

√
6

mixes different SU(3) irreps.

3. Partial Dynamical Symmetry in the SSM

In order to study the action of Q2 · Q2 within a h.o. shell, we consider the

following family of Hamiltonians:

H(β0, β2) = β0Â0B̂0 + β2Â2 · B̂2 (2)

=
β2

18
(9ĈSU3 − 9ĈSp6 + 3Ĥ2

0 − 36Ĥ0) + (β0 − β2)Â0B̂0 .

For β0 = β2, one recovers the dynamical symmetry, and with the spe-

cial choice β0 = 12, β2 = 18, one obtains Q2 · Q2 = H(β0 = 12, β2 =

18) + const(N) − 3L̂2 + terms coupling different shells, where const(N) is

constant for a given h.o. N~ω excitation.

It has been shown9 that H(β0, β2) exhibits partial SU(3) symme-

try of the first kind. Specifically, one finds that among the eigenstates

of H(β0, β2), there exists a subset of solvable pure-SU(3) states, the

SU(3)⊃SO(3) classification of which depends on both the Elliott labels

(λσ , µσ) of the starting state and the symplectic excitation N . In general,

one observes that all L-states in the starting configuration (N = 0) are

solvable with good SU(3) symmetry (λσ , µσ). For excited configurations

(N > 0 and even) one distinguishes between two possible cases:

(a) λσ > µσ: the pure states belong to (λ, µ) = (λσ − N, µσ + N) and

have L = µσ + N, µσ + N + 1, . . . , λσ − N + 1 with N = 2, 4, . . .

subject to 2N ≤ (λσ − µσ + 1).

(b) λσ ≤ µσ : the special states belong to (λ, µ) = (λσ + N, µσ) and

have L = λσ + N, λσ + N + 1, . . . , λσ + N + µσ with N = 2, 4, . . ..

The special states have well-defined symmetry Sp(6,R) ⊃ SU(3) ⊃ SO(3)

and are annihilated by B̂0. This ensures that they are solvable eigenstates

of H(β0, β2) with eigenvalues E(N = 0) = 0, E(N) = β2N(Nσ −λσ +µσ −
6+3N/2)/3 for family (a), and E(N) = β2N(Nσ+2λσ+µσ−3+3N/2)/3 for

family (b). All 0~ω states are unmixed and span the entire (λσ , µσ) irrep.

In contrast, for the excited levels (N > 0), the pure states span only part

of the corresponding SU(3) irreps. There are other states at each excited
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level which do not preserve the SU(3) symmetry and therefore contain a

mixture of SU(3) irreps. All eigenstates respect the Sp(6,R) and SO(3)

symmetries. The partial SU(3) symmetry of H(β0, β2) is converted into

partial dynamical SU(3) symmetry by adding to it SO(3) rotation terms

which lead to L(L+1)-type splitting but do not affect the wave functions.

The solvable states form rotational bands and since their wave functions

are known, one can evaluate the E2 rates between them9.

4. Applications

To illustrate that the PDS Hamiltonians discussed here are physically rel-

evant, applications to realistic nuclear systems have been considered. Here

the results for 20Ne and 24Mg are summarized. In particular, energy spec-

tra and eigenstates of HPDS = h(N)+ ξH(β0 = 12, β2 = 18)+γ2L̂
2 +γ4L̂

4

are compared to those of HQ·Q = Ĥ0−χQ2 ·Q2 +d2L̂
2 +d4L̂

4, where h(N)

is a constant for a given N~ω excitation and contains the h.o. term Ĥ0.
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Figure 1. Energy spectra for 20Ne. Comparison between experimental values (left),
results from a symplectic 8~ω calculation (center) and a PDS calculation (right). The
angular momenta of the positive parity states in the rotational bands are L=0,2,4,. . . for
K=0 and L=K,K+1,K+2, . . . otherwise.

4.1. The 20Ne Example

In Fig. 1, energy spectra of HPDS are compared to those obtained from an

8~ω symplectic calculation (labeled Q2 · Q2), and Fig. 2 shows the decom-

position for representative (2+) states of the five lowest rotational bands.

The PDS Hamiltonian HPDS acts only within one oscillator shell, hence

its eigenfunctions do not contain admixtures from different N~ω configu-

rations. As expected, HPDS has families of pure SU(3) eigenstates which

can be organized into rotational bands, Fig. 1. The ground band belongs

entirely to N = 0, (λ, µ) = (8, 0), and all states of the K=21 band have

quantum labels N = 2, (λ, µ) = (6, 2), κ = 2, see Fig. 2. A comparison
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with the symplectic case shows that the N~ω level to which a particu-

lar PDS band belongs is also dominant in the corresponding symplectic

band. In addition, within this dominant excitation, eigenstates of HPDS

and HQ·Q have similar SU(3) distributions; in particular, both Hamiltoni-

ans favor the same (λ, µ)κ values. Significant differences in the structure

of the wave functions appear, however, for the K=02 resonance band. In

the symplectic calculation, this band contains almost equal contributions

from the 0~ω, 2~ω, and 4~ω levels, with additional admixtures of 6~ω and

8~ω configurations, while in the PDS calculation, it belongs entirely to the

2~ω level. These structural differences are also evident in the interband

transition rates9 and reflect the action of the inter-shell coupling terms in

Eq. (1). Increasing the strength χ of Q2 · Q2 in HQ·Q will also spread the

other resonance bands over many N~ω excitations. The K=21 band (which

is pure in the PDS scheme) is found to resist this spreading more strongly

than the other resonances. For physically relevant values of χ, the low-lying

bands have the structure shown in Fig. 2.
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calculation (denoted Q2 · Q2) and a PDS calculation. In addition, the total strengths
contributed by the N~ω excitations for N > 2 are given for the symplectic case.
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4.2. The 24Mg Example

For the triaxially deformed nucleus 24Mg additional terms X̂3 ≡ (L̂×QE)·L̂
and X̂4 ≡ (L̂ × QE) · (L̂ × QE) are required in the Hamiltonian in order

to reproduce the experimentally observed ‘K-band splitting’ between the

ground and γ band of 24Mg. Although these extra terms break the partial

symmetry, for realistic interaction parameters the amount of symmetry

breaking is very small (∼ 1%). In Fig. 3, energy spectra of H ′

PDS =

HPDS+c3X̂3+c4X̂4 and H ′

Q·Q = HQ·Q+c3X̂3+c4X̂4 are shown. H ′

PDS has

families of pure (and nearly pure) SU(3) eigenstates which can be organized

into rotational bands; they are indicated in the figure.
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Figure 3. Energy spectra for 24Mg. Energies from a PDS calculation (PDS) are com-
pared to symplectic 6~ω results (Q2 · Q2). Both 0~ω-dominated bands (K=01, 21, 41)
and some 2~ω resonance bands are shown. The K=01 and K=21 labels indicate the
ground band and γ band, respectively.

The results are qualitatively similar to those for 20Ne. The PDS Hamil-

tonian cannot account for intershell correlations, but it is able to reproduce

various features of the quadrupole-quadrupole interaction, as can be seen in

Fig. 4, where the structure of selected PDS eigenstates is compared to that

of the corresponding Q2 ·Q2 eigenstates: PDS eigenfunctions do not contain

admixtures from different N~ω configurations, but belong entirely to one

level of excitation. For reasonable interaction parameters, the N~ω level to

which a particular PDS band belongs is also dominant in the corresponding

band of exact Q2 ·Q2 eigenstates. Within this dominant excitation, eigen-

states of both Hamiltonians have similar SU(3) distributions. Structural

differences, nevertheless, do arise and are reflected in the very sensitive

interband transition rates9. Furthermore, due to the presence of X̂3 and

X̂4, H ′

PDS is only an approximate PDS Hamiltonian – the K=61 band has

small admixtures from irreps other than (λ, µ) = (6, 6). Overall, it may be

concluded that PDS eigenstates approximately reproduce the structure of

the exact Q2 · Q2 eigenstates, for both ground and resonance bands.
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Figure 4. Decompositions for calculated Lπ = 6+ states of 24Mg. Eigenstates resulting
from a symplectic 6~ω (Q2 ·Q2) calculation are decomposed into their 0~ω, 2~ω, 4~ω, 6~ω

components. At the 0~ω and 2~ω levels, contributions from individual SU(3) irreps are
shown, for higher excitations (N > 2) only the summed strengths are given. Eigenstates
of H′

PDS
belong entirely to one N~ω level of excitation, here 0~ω or 2~ω; members of

the K=01 and K=21 bands are pure and K=61 states are very nearly (> 99%) pure.

5. Concluding Remarks

The notion of partial dynamical symmetry extends and complements the

familiar concepts of exact and dynamical symmetry. It allows one to remove

undesired constraints from an algebraic theory while preserving some of

the useful aspects of a dynamical symmetry. As a result, the effects of

symmetry breaking can be studied in a controlled manner and new insights

into dynamics of the system under consideration are gained.

The work presented here focuses on a family of PDS Hamiltonians which

are closely related to the deformation-inducing quadrupole-quadrupole in-

teraction. For a particular parametrization, the PDS Hamiltonians take a

form that is intermediate between the full quadrupole-quadrupole interac-

tion, which couples states belonging to different harmonic oscillator shells,

and the Elliott quadrupole-quadrupole interaction, which acts only within

a shell. The intermediate scheme considered here extends the Elliott pic-

ture in that it includes (specific) SU(3) symmetry-breaking contributions.
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At the same time, it is simpler than the full collective picture since it does

not allow for mixing between different oscillator shells.

The PDS scheme sheds light on the in-shell behavior of the quadrupole-

quadrupole interaction. For example, the symplectic model predicts the

existence of states that are primarily dominated by one N~ω level of exci-

tation as well as states that contain strong multi-shell correlationsa. The

states that resist the deformation-induced spreading over several N~ω levels

of excitation the strongest are those for which the associated PDS structure

exhibits good (or almost good) SU(3) symmetry.
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